Embedded Computer for Robotics | NANO-104L
VINCANWO GROUP
Availability: | |
---|---|
Quantity: | |
SKU | NANO-104L | |||||
Processor | Intel® Celeron® J6412 Processor | Intel® Celeron® N100 Processor | ||||
Memory | 4G/8G/16G/32G | |||||
Storage | 1 *M.2 2280, 1 *SATA | |||||
Net work | 4 *Intel I226 | |||||
COM | 2 *RS232(COM1 support RS485) | |||||
USB | 6 *USB | |||||
Display | 1 *HDMI, 1 *DP | |||||
Other interfaces | 1 * input x4 & output x4 GPIO, 1 *AUDIO (2in1) | |||||
Expand slot | 1 *MINI-PCIE (support WIFI/4G module) | |||||
Operating system | Windows/Linux | |||||
Power Input | DC12V | |||||
Size included rack (mm) | 178.4x127x60 | |||||
Individual Gross Weight (KG) | 1.00 | |||||
Mounting Options | Wall-mounted / Desktop | |||||
Operating Temperature | -30 ~ +70℃ | |||||
Storage Temperature | -40 ~ +80℃ | |||||
Storage Humidity *Non-condensing | 5 ~ 95% | |||||
Packaging Information | 1 *Master, 1 *Adapter, 1* Power Supply Cable |
Feature | NANO-104L Specifications |
---|---|
Form Factor | 146 × 102 × 40 mm (fanless, low-profile) |
Processor | Intel® Core™ i7-1185G7 (4C/8T) or NXP 8M Plus (ARM Cortex-A72 + M7) |
AI Acceleration | Intel Iris Xe GPU (1.1 TFLOPS) or NPU (2.3 TOPS) |
Memory/Storage | 16–64GB LPDDR5 + 128GB–2TB NVMe SSD |
Operating Temp | -40°C to +85°C(conformal coating) |
Power Input | 12–48V DC (peak 60W) / PoE++ (802.3bt) |
Robotics I/O | CAN 2.0B/FD, 8× GPIO, 2× PWM, Encoder Input |
Real-Time Control | Preempt-RT Linux / ROS 2 support |
Ingress Protection | IP65 (sealed chassis) |
Motion Control Interfaces
Motor Control: 8× isolated GPIO (24V@2A) + 2× PWM (20kHz) for servo/stepper drivers
Encoder Feedback: 2× differential quadrature inputs (up to 10 MHz)
CAN FD: 5 Mbps deterministic comms for motor controllers (e.g., ODrive, Elmo)
Sensor Fusion Capabilities
Vision: 2× MIPI-CSI (4-lane) for stereo cameras/LiDAR (up to 4K@60fps)
IMU Integration: SPI/I⊃2;C for 9-axis inertial measurement units (e.g., Bosch BMI088)
Time Sync: PTPv2 (IEEE 1588) for multi-sensor timestamp alignment
Edge AI & Real-Time Processing
Robotics Middleware: ROS 2 Galactic/Humble (with DDS middleware)
AI Inference: TensorRT, OpenVINO, or TensorFlow Lite on NPU/GPU
Deterministic Latency: <10 µs cycle times (with Preempt-RT kernel)
Industrial Arms: Real-time path planning, force control
AGV/AMRs: SLAM, obstacle avoidance, fleet management
Drones: Flight control, payload processing (thermal/HD mapping)
Collaborative Robots: Torque sensing, human-robot interaction
Interface | Robotics Use Case |
---|---|
M.2 B-key | 5G/LTE for teleoperation |
M.2 E-key | Wi-Fi 6E/Bluetooth 5.3 (mesh networking) |
Mini-PCIe | FPGA for custom motion control (e.g., EtherCAT) |
PoE+ PSE | Power cameras/LiDAR (60W budget) |
Requirement | NANO-104L Solution |
---|---|
Real-Time Performance | Preempt-RT + Xenomai dual-kernel |
Functional Safety | ISO 13849 PLd / IEC 61508 SIL 2 (optional) |
Vibration Resistance | 10Grms (MIL-STD-202H) |
Power Efficiency | <15W idle (ARM) / <35W peak (x86) |
Certifications | CE, FCC, UL 61010-2-201, RoHS |
Motion Control Stack
OS: Ubuntu 22.04 + ROS 2 + Real-Time kernel patch
Middleware: Eclipse Cyclone DDS for deterministic communication
Control Logic: Implement in C++/Python via MoveIt 2 or Open-RMF
Electrical Integration
Use shielded cables for encoder/CAN signals (ground at one end)
Add TVS diodes on GPIO lines for ESD protection (IEC 61000-4-2)
Isolate 48V motor power from 12V logic power with DC-DC converters
Thermal Management
Attach chassis to robot frame with thermally conductive tape (e.g., 3M 8810)
In ambient >60°C, add heat pipes to external heatsinks
Challenge | Commercial SBC | NANO-104L Industrial |
---|---|---|
Cycle Time | >100 µs jitter | <10 µs deterministic |
Vibration | Fails at 3Grms | 10Grms certified |
24/7 Operation | MTBF: 20,000 hours | MTBF: 200,000+ hours |
I/O Robustness | Unprotected GPIO | Opto-isolated I/O (2.5kV) |
Safety | No functional safety | SIL 2 / PLd capable |
SKU | NANO-104L | |||||
Processor | Intel® Celeron® J6412 Processor | Intel® Celeron® N100 Processor | ||||
Memory | 4G/8G/16G/32G | |||||
Storage | 1 *M.2 2280, 1 *SATA | |||||
Net work | 4 *Intel I226 | |||||
COM | 2 *RS232(COM1 support RS485) | |||||
USB | 6 *USB | |||||
Display | 1 *HDMI, 1 *DP | |||||
Other interfaces | 1 * input x4 & output x4 GPIO, 1 *AUDIO (2in1) | |||||
Expand slot | 1 *MINI-PCIE (support WIFI/4G module) | |||||
Operating system | Windows/Linux | |||||
Power Input | DC12V | |||||
Size included rack (mm) | 178.4x127x60 | |||||
Individual Gross Weight (KG) | 1.00 | |||||
Mounting Options | Wall-mounted / Desktop | |||||
Operating Temperature | -30 ~ +70℃ | |||||
Storage Temperature | -40 ~ +80℃ | |||||
Storage Humidity *Non-condensing | 5 ~ 95% | |||||
Packaging Information | 1 *Master, 1 *Adapter, 1* Power Supply Cable |
Feature | NANO-104L Specifications |
---|---|
Form Factor | 146 × 102 × 40 mm (fanless, low-profile) |
Processor | Intel® Core™ i7-1185G7 (4C/8T) or NXP 8M Plus (ARM Cortex-A72 + M7) |
AI Acceleration | Intel Iris Xe GPU (1.1 TFLOPS) or NPU (2.3 TOPS) |
Memory/Storage | 16–64GB LPDDR5 + 128GB–2TB NVMe SSD |
Operating Temp | -40°C to +85°C(conformal coating) |
Power Input | 12–48V DC (peak 60W) / PoE++ (802.3bt) |
Robotics I/O | CAN 2.0B/FD, 8× GPIO, 2× PWM, Encoder Input |
Real-Time Control | Preempt-RT Linux / ROS 2 support |
Ingress Protection | IP65 (sealed chassis) |
Motion Control Interfaces
Motor Control: 8× isolated GPIO (24V@2A) + 2× PWM (20kHz) for servo/stepper drivers
Encoder Feedback: 2× differential quadrature inputs (up to 10 MHz)
CAN FD: 5 Mbps deterministic comms for motor controllers (e.g., ODrive, Elmo)
Sensor Fusion Capabilities
Vision: 2× MIPI-CSI (4-lane) for stereo cameras/LiDAR (up to 4K@60fps)
IMU Integration: SPI/I⊃2;C for 9-axis inertial measurement units (e.g., Bosch BMI088)
Time Sync: PTPv2 (IEEE 1588) for multi-sensor timestamp alignment
Edge AI & Real-Time Processing
Robotics Middleware: ROS 2 Galactic/Humble (with DDS middleware)
AI Inference: TensorRT, OpenVINO, or TensorFlow Lite on NPU/GPU
Deterministic Latency: <10 µs cycle times (with Preempt-RT kernel)
Industrial Arms: Real-time path planning, force control
AGV/AMRs: SLAM, obstacle avoidance, fleet management
Drones: Flight control, payload processing (thermal/HD mapping)
Collaborative Robots: Torque sensing, human-robot interaction
Interface | Robotics Use Case |
---|---|
M.2 B-key | 5G/LTE for teleoperation |
M.2 E-key | Wi-Fi 6E/Bluetooth 5.3 (mesh networking) |
Mini-PCIe | FPGA for custom motion control (e.g., EtherCAT) |
PoE+ PSE | Power cameras/LiDAR (60W budget) |
Requirement | NANO-104L Solution |
---|---|
Real-Time Performance | Preempt-RT + Xenomai dual-kernel |
Functional Safety | ISO 13849 PLd / IEC 61508 SIL 2 (optional) |
Vibration Resistance | 10Grms (MIL-STD-202H) |
Power Efficiency | <15W idle (ARM) / <35W peak (x86) |
Certifications | CE, FCC, UL 61010-2-201, RoHS |
Motion Control Stack
OS: Ubuntu 22.04 + ROS 2 + Real-Time kernel patch
Middleware: Eclipse Cyclone DDS for deterministic communication
Control Logic: Implement in C++/Python via MoveIt 2 or Open-RMF
Electrical Integration
Use shielded cables for encoder/CAN signals (ground at one end)
Add TVS diodes on GPIO lines for ESD protection (IEC 61000-4-2)
Isolate 48V motor power from 12V logic power with DC-DC converters
Thermal Management
Attach chassis to robot frame with thermally conductive tape (e.g., 3M 8810)
In ambient >60°C, add heat pipes to external heatsinks
Challenge | Commercial SBC | NANO-104L Industrial |
---|---|---|
Cycle Time | >100 µs jitter | <10 µs deterministic |
Vibration | Fails at 3Grms | 10Grms certified |
24/7 Operation | MTBF: 20,000 hours | MTBF: 200,000+ hours |
I/O Robustness | Unprotected GPIO | Opto-isolated I/O (2.5kV) |
Safety | No functional safety | SIL 2 / PLd capable |